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We consider some questions related to the self-similar asymptotics in the kinetic
theory of both elastic and inelastic particles. In the second case we have in mind
granular materials, when the model of hard spheres with inelastic collisions is
replaced by a Maxwell model, characterized by a collision frequency indepen-
dent of the relative speed of the colliding particles. We first discuss how to
define the n-dimensional (n=1, 2,...) inelastic Maxwell model and its connec-
tion with the more basic Boltzmann equation for inelastic hard spheres. Then
we consider both elastic and inelastic Maxwell models from a unified viewpoint.
We prove the existence of (positive in the inelastic case) self-similar solutions
with finite energy and investigate their role in large time asymptotics. It is
proved that a recent conjecture by Ernst and Brito devoted to high energy tails
for inelastic Maxwell particles is true for a certain class of initial data which
includes Maxwellians. We also prove that the self-similar asymptotics for high
energies is typical for some classes of solutions of the classical (elastic) Boltz-
mann equation for Maxwell molecules. New classes of (not necessarily positive)
finite-energy eternal solutions of this equation are also studied.
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1. INTRODUCTION

In this paper we continue a mathematically rigorous investigation of self-
similar solutions of the Boltzmann equation, started in refs. 1 and 2. Our
goal is to extend the results of these papers to the case of solutions with
finite energy and to inelastic Maxwell models (in particular to probe the
‘‘Ernst–Brito conjecture’’ (3, 4)).



In order to explain the idea of inelastic Maxwell models (3–10, 12, 13) we
recall that the simplest model for soft granular materials is a ‘‘gas’’ of hard
spheres, characterized by a certain restitution coefficient 0 < e < 1. In the
rarefied case this model is described by the (inelastic) Boltzmann equation.
Yet, this equation is still rather complicated and we cannot use very simple
models of the BGK type (11) in order to understand the qualitative behavior
of the solutions. This was one of the main reasons for introducing a
Maxwell model (7) by an analogy with the classical (pseudo)-Maxwell mol-
ecules, characterized by a collision frequency independent of the relative
speed of colliding particles. It appears that the one-dimensional version of
the model was independently introduced in ref. 12. Several interesting
problems, such as the shear flow in a slab, (9) the form of the moment
equations (10) and steady solutions in a thermal bath (8, 10) were already
studied in the framework of the 3d Maxwell model. On the other hand,
some very recent numerical experiments with 2d models and exact solutions
for the 1d model (see ref. 3 for a short survey) originate many interesting
questions which call for a clarification. The first, relatively simple question is:
(1) How do we define the n-dimensional (n=1, 2,...) inelastic Maxwell

model and what connection does it have with the more basic Boltzmann
equation for inelastic hard spheres?
We address this question in Section 2 written at the rather formal

(‘‘physical’’) level of rigor. This section is included also to prevent a further
propagation (see, for example, ref. 4) of an erroneous strong form of the
inelastic Maxwell model given in ref. 7 (one of the authors (A.V.B.) must
apologize for it) and corrected later. (13) We show in Section 2 that the
whole derivation of models can be done directly in a weak form and there-
fore all previously published results based on the Fourier transform remain
valid. It should be mentioned that another way of introducing n-dimensional
inelastic Maxwell models was considered by Ernst and Brito, (4) who,
however ‘‘have not been able to perform the Fourier transform ... for
general dimensionality.’’
The second question is:
(2) What can be said about self-similar solutions and their role in large

time asymptotics for initial data possessing finite moments of any order?
We address this question in Sections 3–8 for both elastic and inelastic

interactions (we refer below to these two cases as EBE and IBE, respec-
tively). Such asymptotics was recently proved by the authors of ref. 2 for
solutions of EBE with infinite energy. Independently, it was conjectured
recently by Ernst and Brito (3, 4) (see also refs. 5 and 6) that a similar prop-
erty holds also for solutions of IBE with finite energy (the case of finite
energy is certainly more interesting from a physical viewpoint despite the
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fact that inelastic Maxwell models should be considered just as a rough
approximation to inelastic hard spheres). In their very interesting paper (3)

Ernst and Brito presented two main arguments to explain the reasons in
favor of their conjecture: (a) higher moments of ‘‘rescaled’’ solutions of
IBE tend to infinity for long times and (b) the whole family of self-similar
solutions must be two-parametric (a fact well-known for EBE, see, e.g.,
ref. 14) having in the general case power-like tails with the ‘‘same’’ (see (a))
number of finite moments.
They, however, did not present any method for ‘‘extracting’’ this

special self-similar solution satisfying their conjecture (it must be unique
for a given class of initial conditions) from the whole two-parameter
family. In any case their conjecture seems to be correct; we prove
rigorously that (a) such unique self-similar solution does exist and (b) the
conjecture is true at least for a wide class of isotropic initial conditions
including Maxwellians (Sections 5–7). There is a subtle point to be under-
stood: the tails are ‘‘high-energy’’ in a special sense: the time-evolution
cools a granular gas to a time dependent temperature T=T(t). The
conjecture to be proved says that, when tQ. (and T(t)Q 0), the power-
like behavior is exhibited at energies which are relatively large with respect
to T(t), but these energies may be very low with respect to T(0). On the
other hand, any moment of the solution remains bounded for all t > 0
provided it was finite at t=0. Thus, the power-like behavior at interme-
diate energies T(t) [ E [ T(0), tQ., is not very important for high
energy tails.
The paper is organized as follows. After discussing inelastic Maxwell

models in Section 2, we return to the classical (elastic) case and explain a
formal structure of corresponding self-similar solutions with finite energy
(Section 3). In the same section we establish a class of solutions which
might have a self-similar asymptotics. These considerations are extended to
the inelastic case in Section 4. In the same section we introduce a general-
ized kinetic equation (in the Fourier representation) which allows treating
both the elastic and the inelastic cases from a unified viewpoint. In Sec-
tion 5 we study an integral equation for (bounded!) self-similar solutions
and construct its non-trivial solution f (Theorem 5.3) which appears to
be unique under certain natural restrictions (uniqueness is proved at the
end of Section 6). In Section 6 we prove that the self-similar solution con-
structed in Theorem 5.3 does represent long time asymptotics for a certain
class of initial conditions (Theorem 6.2). In Section 7 we apply the results
(obtained for the generalized kinetic equation) to general multi-dimensional
(isotropic) Maxwell models and prove, in particular, the positivity of self-
similar solutions and a weakened form (not for ‘‘all’’ initial conditions) of
the Ernst–Brito conjecture (Theorem 7.1). Then we discuss this conjecture
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and our results in more detail in Section 8. Section 9 is devoted to applica-
tions of the results obtained in Sections 5 and 6 to high energy tails for the
elastic Boltzmann equation. It is proved (Theorem 9.2) that the self-similar
asymptotics (for high energies) is also typical for a certain class of solutions
of EBE. The main results of the paper are formulated in Theorems 5.3, 6.2,
7.1, 9.2, and in Proposition 8.2. The latter relates to new classes of self-
similar eternal solutions of the classical (elastic) Boltzmann equation for
Maxwell molecules. For brevity we do not describe in this paper such
‘‘routine’’ procedures as the generalization of our results from ‘‘pseudo-’’
to ‘‘true’’ Maxwell molecules (in the elastic case) and the proof that the self-
similar solutions constructed in Section 5 (Theorem 5.3) as solutions of a
suitable integral equation do satisfy the initial integro-differential equation.
For the readers who are not interested in the mathematical details, we

present a rough description of our main results in Section 10.

2. THE KINETIC EQUATION AND ITS FOURIER REPRESENTATION

Let f(v, t) be the one-particle distribution function (here v ¥ Rn

(n=2, 3,...) and t ¥ R+ denote the velocity and time variables, respectively)
of a spatially homogeneous system of inelastic particles. Then the spatially
homogeneous Inelastic Boltzmann Equation (IBE) reads as follows

“f
“t
=
1
2
dn−1 F

R
n
F
Sn−1
|u ·n| 5 1

e2
f(t, vg) f(t, wg)−f(t, v) f(t, w)6 dn dw,

(2.1)

where u=v−w, and vg, wg are the pre-collisional velocities given by the
following equalities

vg=v−
1+e
2e
(u ·n) n, (2.2)

wg=w+
1+e
2e
(u ·n) n. (2.3)

Then the weak form of the equation reads as follows:

“

“t
(f, g)=dn−1

1
4
F
R
n
F
R
n
F
Sn−1
|u ·n| f(t, v) f(t, w)

×[g(vŒ)+g(wŒ)−g(v)−g(w)] dn dv dw, (2.4)
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where

(f, g)=F
R
n
f(t, v) g(v) dv. (2.5)

Here g(v) is any ‘‘good’’ test function and vŒ, wŒ are post-collisional veloci-
ties given by

vŒ=1
2 (v+w+uŒ), wŒ=1

2 (v+w−uŒ), (2.6)

uŒ=u−(1+e)(u ·n) n, u=v−w, uŒ=vŒ−wŒ. (2.7)

where 0 < e [ 1 is the restitution coefficient. We consider the case e=const.
only.
Without loss of generality we can assume that

(f, 1)=1, (f, v)=0. (2.8)

We also introduce the usual notation for granular temperature

T(t)=
1
n
(f, |v|2). (2.9)

Following refs. 7 and 8 we can also model the system by a pseudo-
Maxwellian kinetic equation. We change the factor |u ·n| under the integral
sign in Eq. (2.4) to O|u|P |u ·n|/|u|, where the average O|u|P is a function of
time t only. A reasonable approximation is

O|u|P 5 cn `T(t), cn=const. (2.10)

where cn can be different for different problems. Thus we replace Eq. (2.4)
by the Maxwell model for the IBE in weak form, i.e.:

“

“t
(f, g)=

dn

2
cn `T (g, QM(f, f)), (2.11)

where the term in the right-hand side describes the inelastic collisions
between particles. The explicit form of the of the weak form of pseudo-
Maxwellian collision integral is: (7, 10)

(g, QM(f, f))=F
R
n
F
R
n
F
Sn−1
f(t, v) f(t, w) :u ·n

|u|
: [g(vŒ)−g(v))] dn dv dw.

(2.12)
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The main idea justifying the use of this model is that it is very advan-
tageous if we pass to the Fourier representation by taking g=e−ik · v

in (2.11). Following refs. 7, 10, and 16 we introduce the characteristic
function

f(k, t)=F
R
n
f(v, t) e−ik · v dv. (2.13)

Then the equation for f(k, t) reads as follows (see ref. 7 for details)

“f

“t
=dn−1cn `T I(f, f), (2.14)

where

I(f, f)=
1
2
F
Sn−1
dn :k ·n
|k|
: [f(k+) f(k−k+)−f(0) f(k)], (2.15)

k+=z(k ·n) n, z=
1+e
2
. (2.16)

By re-scaling the time variable

t̃=dn−1cn F
t

0
`T(tŒ) dtŒ (2.17)

we finally obtain the resulting n-dimensional Maxwell model in the Fourier
representation (tilde is omitted)

“f

“t
=I(f, f)=F

Sn−1
dn 1k ·n

|k|
2
+
[f(k+) f(k−k+)−f(0) f(k)],

k ¥ Rn, n=2, 3,... (2.18)

This equation can be formally extended to the case n=1

“f

“t
=I(f, f)=f(zk) f[(1−z) k]−f(0) f(k), k ¥ R, (2.19)

since

F
Sn−1
dn F(n)=2 F

R
n
dr d(|r|2−1) F(r).
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If f(k, t)=f(|k|2/2, t) (isotropic solution) then

|k+|2=z2 |k|2 m2, |k−k+|2=|k|2 [1−z(2−z) m2], m=k ·n/|k|.

and we obtain for n \ 2

I(f, f)=F
1

0
ds Gn(s){f(z2sx) f[(1−bs) x]−f(0) f(x)}, (2.20)

where

x=|k|2/2, b=z(2−z), Gn(s)=
1
2 Wn−2(1−s)

n−3
2 , n=2, 3,... (2.21)

and Wn−1 denotes the ‘‘area’’ of the unit sphere in n-dimensions, Sn−1

(W1=2p,...).
Hence, in the case of isotropic solutions, Eq. (2.18) becomes:

“f

“t
=F

1

0
ds Gn(s){f(z2sx) f[(1−bs) x]−f(0) f(x)},

x=|k|2/2, n=2, 3,... (2.22)

This equation coincides with the usual (elastic) Fourier-transformed
Boltzmann equation, if z=b=1. The case n=1

“f

“t
(|k|, t)=f(z|k|) f[(1−z) |k|]−f(0) f(|k|) (2.23)

is formally quite similar to the purely elastic case with z=1 and
G1(s)=d(s−s0), with an obvious change of notation. There is, however, an
essential difference between the two cases, since Eq. (2.22) is written for
f(|k|2/2, t) whereas Eq. (2.23) is valid for f(|k|, t). This difference plays an
important role when we invert the Fourier transform. In particular the well-
known BKW solution (18, 19) of Eq. (2.23)

f(|k|, t)=kBKW(|k| e−mt), kBKW(x)=e−x(1+x), m=z(1−z) (2.24)

leads to the distribution function

f(|v|, t)=emtF(|v| emt), F(|v|)=
1
2p

F
.

−.
dk e ikv− |k|(1+|k|)=

2
p(1+|v|2)2

.

(2.25)
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with a power-like tail for |v|Q.. This solution was originally derived in
ref. 5 without noting the relation to to the BKW mode. When combined
with some results of numerical experiments, (5) it was probably the starting
point for the ‘‘Ernst–Brito conjecture’’ (see refs. 3 and 4 for more details).

Remark 2.1. The BKW mode was first published in ref. 18 as the
general class of distribution functions having the form

f(|v|, t)=(a(t)+b(t) |v|2) e−c(t) |v|
2
,

This class is obviously invariant under the Fourier transform

f(x, t)=(f, e−ik · v)=(A(t)+B(t) x) e−C(t) x, x=|k|2.

One can easily check that the whole class of such solutions of Eq. (2.22)
(with z=b=1) normalized by the condition f(0, t)=1 reads

f(x, t)=e−axkBKW(bxe−mt), F
1

0
ds s(1−s) G(s)

where a and b are free parameters. This form of the solution was used in
most publications based on the Fourier transform, published after 1975. (16)

We consider below both elastic and inelastic Maxwell models. The
elastic case (with arbitrary kernel G(s) \ 0 and z=b=1) is discussed in
Section 3.

3. ELASTIC BOLTZMANN EQUATION AND ITS SELF-SIMILAR

SOLUTIONS WITH FINITE ENERGY

The Cauchy problem for the elastic Boltzmann equation (pseudo-
Maxwell molecules) reads:

“f

“t
=F

1

0
ds G(s){f(sx) f[(1−s) x]−f(0) f(x)}, (3.1)

f|t=0|=f0(x), f0(0)=f(0, t)=1, x \ 0, t > 0,

where the initial characteristic function is arbitrary:

f0 1
|k|2

2
2=F

R
n
f0(|v|) e−ik · v dv, k ¥ Rn, n=2, 3,... (3.2)

Here f0(|v|) is a (generalized) density of a probability measure in Rn. It is
well-known (see ref. 2 for details) that in this case there exists a unique
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characteristic function f(x, t) satisfying Eq. (3.1). We recall that the point-
wise convergence fn Q f. of characteristic functions is equivalent to the
convergence fn Q f. of the corresponding distribution functions in the
sense of probability measures. (15)

We distinguish two essentially different classes of initial conditions:

(A)
1
n
(f0, |v|2)=−f

−

0(0)=1 (finite energy) (3.3)

and

(B) (f0, |v|2)=. (infinite energy). (3.4)

In case (A) the solution f(|v|, t) of EBE tends, as tQ. to the Maxwell
distribution. This means that

f(x, t)Q e−x, tQ., (3.5)

where f(x, t) is the solution of Eq. (3.1).
A long time asymptotics of f(x, t) for case (B) is much less trivial. It

was proved recently (2) that for certain classes of initial conditions we obtain
a typical self-similar asymptotics

f(xe−at, t)Q ka(x), tQ., (3.6)

where the value of the parameter a > 0 depends on the initial condition. We
note that the characteristic function fa(x, t)=ka(xeat) is itself a self-similar
solution of Eq. (3.1). The whole class of such self-similar solutions was
constructed in ref. 2; moreover, some of them (for G=1 in (3.1)) were
found in an explicit form. (1, 2)

The results, however, refer to case (B) (infinite energy) which is less
important for applications than the class (A) (finite energy). We shall see
below that some of the results of ref. 2 concerning the self-similar asymp-
totics can be generalized to the case (A) for both elastic and inelastic
Maxwell models.
Let us consider the Cauchy problem (3.1) with the condition (3.3)

(case (A)). Then we let

f(x, t)=e−xf̃(x, t), f0(x)=e−xf̃0(x), (3.7)

and assume that

f̃0(x)=1+O(xp), xQ 0, p > 1. (3.8)
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The equation for f̃(x, t) and the condition f̃(0, t)=1 remain unchanged.
Therefore we omit tildes below and consider problem (3.1) again, with the
additional assumption

f0(x)=1+axp+·· · , xQ 0, p > 1. (3.9)

Then a solution for xQ 0 reads

f(x)=1+a(xe−mpt)p+·· · , (3.10)

where

mp=
l(p)
p
, l(p)=F

1

0
ds G(s)[1−(s)p−(1−s)p], p > 1. (3.11)

A self-similar asymptotics would mean that

f(xempt, t)Q kp(x), tQ., (3.12)

where k(xe−mpt) is a self-similar solution of Eq. (3.1). Hence, we start a
more detailed study of the whole class of self-similar solutions satisfying for
a fixed p the equation

mpxkŒ(x)+F(x)−k(x)=0,

F(x)=F
1

0
ds G(s) f(sx) f[(1−s) x],

(3.13)

where it is assumed without loss of generality that

F
1

0
ds G(s)=1. (3.14)

The following properties of l(p) are well known: (14)

0 < l(p) < 1, l(1)=0, lŒ(p) > 0, lœ(p) < 0, p \ 1. (3.15)

Therefore

[plŒ(p)−l(p)]Œ=plœ(p) < 0, (3.16)

and this leads to the following properties of the function mp=m(p) defined
by (3.11) (note that p2mŒ(p)=plŒ(p)−l(p)):
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(a) m(p) > 0 if p > 1, m(1)=0, limpQ. m(p)=0,
(b) m(p) has a unique maximum at, say, p=pg; moreover, 2 < pg < 3

since m(2)=m(3) and pglŒ(pg)=l(pg).

A typical behavior of m(p) can be understood by considering the
simplest case G=1, for which:

m(p)=
p−1
p(p+1)

, pg=1+`2. (3.17)

Hence the equation

m(p)=b=const., p > 1, (3.18)

has:

(1) no roots if b > m(pg);
(2) a unique double root p=pg if b=m(pg);
(3) two different roots p1 < pg < p2 if 0 < b < m(pg).

We consider the most important case (3) and first assume that p1 and
p2 are rationally independent. Then the solution of Eq. (3.13) can be con-
structed as a double power series

k(x)= C
.

n, m=0
b(n, m) xnp1+mp2, b(0, 0)=1, 1 < p1 < pg < p2. (3.19)

Here the two parameters b(1, 0) and b(0, 1) are arbitrary whereas all the
other coefficients can be found by recurrence formulas after substituting
the series into Eq. (3.13). If p1 and p2 are rationally dependent, say
kp1=lp2 for some integers k > l having no common prime factors, then
Eq. (3.19), should be replaced by

k(x)=1+C
.

n=l
bnxna, a=

p1
l
=
p2
k
,

where we still have two free parameters bl and bk. This is, by the way, the
case of the BKW solution (2.24), where p1=2, p2=3, a=1. (14, 17)

We consider the problem (3.1) again, with f0(x) satisfying (3.7) for a
given p > 1. If the conjecture (3.12) is true and 1 < p < pg then we must
choose p1=p, b(1, 0)=a because of the asymptotic equality (3.10) (as
xQ 0). It remains, however, unclear how to choose the second parameter
b(0, 1) in the series (3.19) for a given initial data f0(x). If p > pg then
the uncertainty disappears since the only option is to choose p2=p,
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b(0, 1)=a, b(1, 0)=0. Then we obtain a simplified, one-parameter self-
similar solution (it is easy to show that b(n, m)=0 for any n \ 1 if
b(1, 0)=0):

k(x)= C
.

m=0
bmxmp, b0=1, b1=a, p > pg. (3.20)

Such solutions for p=3, 4,... were studied long ago (17) and soon it became
clear that they cannot play any role in the long time asymptotics. Hence
the conjecture (3.12) is not true in the general case. We shall see, however,
that there is a case (especially important for the inelastic models) when the
conjecture is true.

Remark 3.1. One can easily guess from a comparison of Eqs. (2.22)
and (3.1) that practically the same considerations can be made for the case
of IBE. Moreover, no changes are needed if one considers the 1d case in
the variable x=|k| instead of x=|k|2/2 (Eq. (2.23) is the particular case of
Eq. (3.1) with G(s)=d(s−z)).

It is easy to show that the solution f(x, t) of the problem (3.1) has
the following property: If 0 [ f0 [ 1 then 0 [ f(x, t) [ 1 for all t > 0. Is,
perhaps, the conjecture true at least for these solutions? In order to clarify
this question we consider the initial data satisfying the following two
conditions:

0 [ f0(x) [ 1; f0(x)=1−
1
2 x
p+·· · , xQ 0, p > 1. (3.21)

where the second condition is obtained from the general case (3.9) with
a < 0 by the scaling transformation xQ |a|−1/p x which does not change
Eqs. (3.1) and (3.13).
It is convenient to change the x-variable by the transformation:

f0(x)=f̂0(xh), f(x, t)=f̂(xh, t), h=p/2 (3.22)

and then omit hats in the final equation. Thus we transform the problem
(3.1) to

“f

“t
=Ih(f)−f(x), Ih(f)=F

1

0
ds G(s) f(shx) f[(1−s)h x],

f|t=0|=f0(x), 0 [ f0(x) [ 1, f0(x)=1−
1
2 x
2+·· · , xQ 0, h > 12 .

(3.23)
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The corresponding equation for self-similar solutions f(x, t)=k(xe−t/c)
now reads

c−1xk(x)+Ih(k)−k=0, c−1=1
2 l(2h), h > 12 . (3.24)

In the next section we shall show that Eqs. (3.23) and (3.24) with
1 < h < 2 have common properties with the Fourier transformed isotropic
IBE (2.22) and can, therefore, be studied in a similar way.

4. UNIFIED APPROACH TO EBE AND IBE

We transform Eq. (2.22) with an arbitrary kernel G(s) \ 0 by intro-
ducing a new function f̂

f̂(x, t)=f(`x, t). (4.1)

Then we make the necessary scaling transformations x̂=x/x0, t̂=t/x0
and omit hats in the final equations. This leads to the following Cauchy
problem

“f

“t
=I(f)−f, I(f)=F

1

0
ds G(s) f(`s zx) f[`1−bs x],

f|t=0|=f0(x), |f0(x)| [ 1, f0(x)=1−
1
2
x2+·· · , xQ 0.

(4.2)

It was assumed above that the condition (3.14) is satisfied. The restriction
|f0(x, t)| [ 1 is automatically fulfilled for any characteristic function.
Usually we replace it by a weaker condition

0 [ f0(x) [ 1 (4.3)

which is also preserved in time. We note that a typical initial condition is a
Maxwellian

f0(x)=exp(−x2/2). (4.4)

If the initial distribution function f0(|v|) decays for |v|Q. faster than
exp(−a |v|), then f0(x) is represented by the following series

f0(x)=1−
1
2 x
2+C

.

n=2
(−1)n anx2n, an > 0, (4.5)

with a non-zero radius of convergence.
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By using Eqs. (2.13), (2.21), and (4.1) one can easily verify the identity

(f0, |v|2)=−(d/2) f
'

0 (0).

This explains the following

Remark 4.1. The (formally) general case:

f0(x)=1−ax2h+·· · , xQ 0, h ] 1, (4.6)

is not very relevant for IBE since: (a) h > 1 means that f0(|v|) is partly
negative (zero energy), and (b) h < 1 means that f0(|v|) has infinite energy
and in such a case (much less interesting for applications) we have an extra
difficulty in making the inelastic Maxwell model consistent with the initial
hard sphere model (see Eqs. (2.10) and (2.17)). This is the reason why we
consider for IBE just the value h=1 at variance with case e=z=1
(Section 3).

The Cauchy problem (4.2) leads (as in Section 3) to the following
equation for self-similar solutions f(x, t)=k(xe−t/d)

d−1xkŒ(x)+I(k)−k=0,

d−1=1
2 F

1

0
ds G(s)[1−sz−(1−bs)]=1

2 z(1−z) F
1

0
ds G(s) s

(4.7)

The similarity of Eqs. (3.23), (3.24) and (4.2), (4.7) is obvious. There-
fore we consider below a more general equation

“f

“t
=K(f)−f, K(f)=F

1

0
ds G(s) f[a(s) x] f[b(s) x], (4.8)

with arbitrary functions 0 [ a(s), b(s) [ 1 and G(s) satisfying the condition
(3.14). We also assume that

a2(s)+b2(s) [ 1, 0 [ s [ 1,

l=F
1

0
ds G(s)[1−a2(s)−b2(s)] > 0,

(4.9)

and note that the case

a(s)=sh b(s)=(1−s)h, h > 12 , (4.10)
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corresponds to EBE (3.23), whereas the case

a(s)=z`s, b(s)=`1−bs, 1
2 [ z [ 1, b=z(2−z), (4.11)

corresponds to IBE (4.2). The initial condition satisfies our usual
restrictions:

f|t=0|=f0(x), 0 [ f0(x) [ 1, f0(x)=1−
1
2 x
2+·· · , xQ 0. (4.12)

The equation for self-similar solutions f(x, t)=k(xe−t/r) now reads

r−1xkŒ(x)+K(k)−k=0, r−1=
l

2
, (4.13)

where

k(x)=1− 12 x
2+·· · , xQ 0. (4.14)

The assumption of self-similar asymptotics, i.e.,

f(xe t/r, t)Q k(x), tQ., (4.15)

may be true only if 0 [ k(x) [ 1. Hence, we have to study only bounded
positive solutions of Eq. (4.13) satisfying (4.14). The simplest explicit
example of such solution corresponds to the BKW-solution of the Boltz-
mann equation: if h=1 in Eq. (3.24), then kBKW(x) (2.24) is a solution
satisfying all the above conditions. How can we generalize this simple
solution to the case of the operator K[f] with arbitrary functions a(s) and
b(s)? This question is considered in the next section.

5. AN INTEGRAL EQUATION FOR THE SELF-SIMILAR SOLUTIONS

Equation (4.13) can be rewritten as

d
dx
[x−rk(x)]=−

r
x r+1

F(x),

F(x)=K(k)=F
1

0
ds G(s) k[a(s) x] k[b(s) x].

(5.1)

Assuming that k(x) is bounded we therefore obtain the following integral
equation:
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k(x)=R[k]=rxr F
.

x

dy
y r+1

F(y)=r F
.

1

dy
y r+1
F(yx), (5.2)

r−1=
1
2
F
1

0
ds G(s)[1−a2(s)−b2(s)]. (5.3)

This equation has obviously two trivial solutions k=0 and k=1. Our aim
is to construct a nontrivial solution satisfying (4.14). A natural way is to
use an iteration process:

kn+1(x)=R[kn], n=0, 1,... (5.4)

We note that: (1) 0 [ R[k] [ 1 if 0 [ k [ 1, (2) R[k] [ R[f] if 0 [ k [ f.
Hence the iteration converges point-wise if we choose the initial approxi-
mation 0 [ k0 [ 1 in such a way that

k0(x) [ R[k0] or k0(x) \ R[k0]. (5.5)

An obvious choice is k0(x)=kBKW, defined by (2.24). The following
observation shows that this choice does lead to convergence.

Lemma 5.1. If k(x)=e−x(1+x) then

(1) k [ R[k] if a(s)+b(s) [ 1, a.e. for 0 [ s [ 1;

(2) k \ R[k] if a(s)+b(s) \ 1, a.e. for 0 [ s [ 1;

(3) k=R[k] if a(s)+b(s)=1, a.e. for 0 [ s [ 1.

Proof. If we denote

D(x)=
l

2
xkŒ(x)+K(k)−k, l=F

1

0
ds G(s)[1−a2(s)−b2(s)],

then

R[k]−k=r F
.

1

dy
y r+1
D(yx). (5.6)

Therefore it is sufficient to show that D \ 0 in case (1), D [ 0 in case (2),
and D=0 in case (3). We can represent D(x) as

D(x)=F
1

0
ds G(s) g[x; a(s), b(s)], (5.7)
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where

g(x; a, b)=e−(a+b) x(1+ax)(1+bx)−e−x 11+x+1−a
2−b2

2
x22

First we assume that a+b [ 1. Then we perform an elementary estimate
omitting obviously positive terms:

g(x; a, b)=e−x{[e[1−(a+b)] x(1+ax)(1+bx)−(1+x+cx2)}

\ e−x 3[1+(1−a−b)] x+(1−a−b)
2

2
x2(1+ax)(1+bx)

−(1+x+cx2)4

\ e−xx2 5ab+(1−a−b)(a+b)+(1−a−b)
2

2
−c6=0,

c=
1−a2−b2

2

and hence (1) is proved. If a+b \ 1, then

−g(x; a, b)=e−(a+b) x[e(a+b−1) x(1+ax)(1+bx)−(1+x+cx2)}

\ e−(a+b) xx2 5c+(a+b−1)
2

2
+(a+b−1)−ab6=0,

and (2) is proved. (3) is obvious. L

Hence, the sequence {kn(x)}, defined by Eq. (5.4) with k0=e−x(1+x),
is: (1) monotone increasing if a(s)+b(s) [ 1, and (2) monotone decreasing
if a(s)+b(s) \ 1. The convergence is guaranteed since 0 [ kn [ 1 for all
n=0, 1,... . The only remaining problem is to exclude the trivial limits

(a) lim
nQ.
kn(x)=1, (b) lim

nQ.
kn(x)=0. (5.8)

Then it is clear that the function

k(x)= lim
nQ.
kn(x) (5.9)

is a nontrivial solution of the integral equation.
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First we consider case (2) of Lemma 5.1 assuming that a+b \ 1. Then
the iteration process (5.4) leads to a monotone decreasing sequence

k0=e−x(1+x), k1=R[k0] [ k0, k2=R[k1] [ k1,... . (5.10)

If we find a non-zero function w(x) \ 0 such that

(a) w(x) [ e−x(1+x), (b) R[w] \ w, (5.11)

then we get the estimate

kn(x) \ w(x), n=0, 1,...,...;

thus excluding the trivial limit k(x)=0. An example of such function is
given by

Lemma 5.2. The function w(x)=kM=exp(−x2/2) satisfies both
conditions (a) and (b) in (5.11), provided

a2(s)+b2(s) [ 1, a.e. for 0 [ s [ 1.

Proof. Condition (a) is satisfied since

x− log(1+x) [ x2/2, x > 0.

Condition (b) can be reduced to the inequality DkM \ 0 in the notation of
Eq. (5.6) with kM replacing k. In a way similar to that used for Eq. (5.7),
we obtain

DkM (x)=F
1

0
ds G(s) h[x; a(s), b(s)],

where

h(x; a, b)=e−(a
2+b2) x2/2−e−x

2/2 11+1−a
2−b2

2
x22

=e−x
2/2 5e (1−a2−b2) x2/2− 11+1−a

2−b2

2
x226 \ 0

Hence DkM \ 0 and therefore R[kM] \ kM (see Eq. (5.6)). L

Lemmas 5.1 and 5.2 in combination with the monotone iteration
scheme (5.10) prove the following
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Theorem 5.3. The integral equation (5.2) has a non-trivial solution
k(x) such that

e−x
2/2 [ k(x) [ e−x(1+x), x \ 0, (5.12)

provided

a(s)+b(s) \ 1, and a2(s)+b2(s) [ 1, a.e. for 0 [ s [ 1. (5.13)

The above theorem applies to the case of EBE (3.23) with 12 < h [ 1
and to the case of IBE (4.2) when a(s) and b(s) are given by Eqs. (4.11). To
prove the latter case we need to verify that

q(z, s)=z`s+`1−z(2−z) s \ 1, 0 [ s [ 1, 1
2 [ z [ 1.

The function q(z, s) has the following properties:

(1) q(z, 0)=q(z, 1)=1; (2) qss(z, s) < 0, 0 < s < 1, 1/2 [ z [ 1.

Hence, for any fixed 1/2 [ z [ 1, the function q(z, s) as a function of s
cannot have a local minimum on (0, 1) and therefore q(z, s) \ 1.

Remark 5.4. The case when a(s)+b(s) [ 1 is technically more dif-
ficult and less important for applications. There is almost no hope, in this
case, to prove a ‘‘simple’’ result similar to Theorem 5.3. In the case of EBE
(3.23) with h > 1 in Eqs. (4.10), such a result would be valid also for
h > hg=pg/2, when the corresponding power series (3.19) actually does
not have any free parameters (after the scaling transformation x̂=ax).
This would mean that the function k(x) represented by the series (3.19) is
automatically bounded for all x > 0, which seems very doubtful. Therefore
we do not consider the case a(s)+b(s) [ 1 in the sequel and hope to clarify
it completely in a future paper.

In the next section we study the role of self-similar solutions for large
time asymptotics.

6. SELF-SIMILAR ASYMPTOTICS

Let us consider Eq. (4.8) with initial condition (4.12). We assume that
G(s) \ 0, 0 [ a(s), b(s) [ 1 satisfy conditions (3.14), (4.9) and

a(s)+b(s) \ 1, s > 0. (6.1)
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In accordance with Theorem 5.3 there exists a self-similar solution
fS(x, t)=k(xe−lt/2), satisfying

0 [ k(x) [ 1; k(x)=1− 12 x
2+·· · , xQ 0. (6.2)

We denote

f(x, t)=k(xe−lt/2)−u(x, t), f0(x)=k(x)−u0(x), (6.3)

where f(x, t) is the solution of the Cauchy problem (4.8), (4.12). Such a
solution can be constructed, for example, in the form of a standard Wild’s
sum. (2)

The initial value problem for u(x, t) reads as follows

“u
“t
=P(U, u)+P(u, U)−u, (6.4)

where

P(u1, u2)=F
1

0
ds G(s) u1[a(s) x)] u2[b(s) x],

U(x, t)=
1
2
[f(x, t)+k(xe−lt/2)],

(6.5)

and

u|t=0|=u0(x)=k(x)−f0(x). (6.6)

We consider the linear equation (6.4) for u(x, t) assuming that U(x, t) is
given. If u1, 2(x, t) are two solutions of Eq. (6.4) and u1(x, 0) [ u2(x, 0),
then obviously u1(x, t) [ u2(x, t) for all t \ 0, since U(x, t) \ 0. Hence,
|u(x, t)| [ ũ(x, t), where ũ(x, t) is the solution of (6.4) such that
ũ(x, 0)=|u0(x)|. Noting that 0 [ U(x, t) [ 1, we obtain the following
estimate

|u(x, t)| [ e tL |u0(x)|, t \ 0,

Lu=F
1

0
ds G(s){u[a(s) x]+u[b(s) x]−u(x)},

(6.7)

It is clear that

e tLu(x) \ 0 if u \ 0
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(note that L=L+−I, where L+u \ 0 for any u \ 0). Moreover, for any
a > 0

LSa=SaL, Sau(x)=u(ax).

Therefore

|u(xemt, t)| [ e tL |u0(xemt)|, m=
l

2
=
1
2
F
1

0
ds G(s)[1−a2(s)−b2(s)].

We note that

Lx2p=−l(p) x2p, l(p)=F
1

0
ds G(s){[1−[a(s)]2p−[b(s)]2p},

Let us assume now that

|u0(x)| [ bx2(1+E), b > 0, E > 0. (6.8)

Then

0 [ |u(xemt, t)| [ bx2(1+E)e−c(E) t, (6.9)

c(E)=l(1+E)−(1+E) l(1)=
1
2
F
1

0
ds G(s) B[2(1+E); a(s), b(s)],

(6.10)

B(p; a, b)=2(1−ap−bp)−p(1−a2−b2).

Our goal is to prove that c(E) > 0 for sufficiently small E > 0 provided the
conditions (3.14), (4.10), and (6.1) are fulfilled. We note that

“B
“b
=2pb(1−bp−2) \ 0, p \ 2.

Since b \ 1−a thanks to Eq. (6.1), we have the estimate

B(p; a, b) \ g(p; a), g(p; a)=B(p; a, 1−a).

The function

g(p; a)=2[1−ap−(1−a)p]−p[1−a2−(1−a)2]
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is, for any fixed a ¥ (0, 1), a concave function of p since

“
2g
“p2
=−2[(log a)2 ap+(log(1−a))2(1−a)p] [ 0, 0 < a [ 1 (6.11)

On the other hand, g(2; a)=g(3; a)=0. Therefore

g(p; 0)=g(p; 1)=0, g(p; a) \ 0 if 0 < a < 1, 2 [ p [ 3.

If 2 < p < 3 then the function g(p; a) has no zero except at a=0 and a=1
(otherwise, Eq. (6.11) would be contradicted). On the other hand, the
condition (4.9)

0 < l [ F
1

0
ds G(s){1−a2(s)−[1−a(s)]2}

shows that G(s) cannot be concentrated at points where a(s)=0 or
a(s)=1. This finally leads to the inequality

c(E) > 0, 0 < E < 1/2

in the notation of Eq. (6.10). Hence we have proved the following

Lemma 6.1. For any G(s) \ 0, a(s) \ 0 and b(s) \ 0 (0 [ s [ 1)
satisfying conditions (3.14), (4.9), (6.1) the function c(E) (6.10) is strictly
positive for 0 < E < 1/2.

Let us now return to inequalities (6.8), (6.9) and note that 0 [
|u0(x)| [ 1. Therefore the inequality (6.8) is automatically fulfilled for some
0 < E0 < 1/2 if it it is valid for some other E > E0 (with another irrelevant
constant parameter b > 0). Therefore we obtain the following result

Theorem 6.2. Let us consider the Cauchy problem (4.8), (4.12)
assuming that the conditions (3.14), (4.9), (6.1) are satisfied. In addition we
assume that

f0(x)=1−
1
2 x
2+O(xp), xQ 0, p > 2.

Then

f(xelt/2, t)Q k(x), tQ.

for any x \ 0.
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Proof. We need only to verify (6.8) for u0(x)=k(x)−f0(x), since
the rest of the proof has been given above. The estimate (5.12) shows that
k(x)=1−x2/2+O(x3). Hence

|u0(x)| [ |k(x)−f0(x)|=|[k(x)−(1−x2/2)]−[f0(x)−(1−x2/2)]|

=O(x3)+O(xp), xQ 0, p > 2.

On the other hand, |u0(x)| [ 1. Therefore we can always find a positive
constant b > 0 and a positive E <Min(1/2, p/2−1) and such that the
condition (6.8) is fulfilled. Then according to Lemma 6.1, c(E) > 0 in the
inequality (6.9) and this completes the proof. L

Corollary 6.3. If f0(x)=exp(−x2/2) then f(xelt/2, t)Q k(x) as
tQ..

Corollary 6.4. The self-similar solution constructed in Theorem 5.3
is unique in the class of functions satisfying the conditions

0 [ k(x) [ 1; k(x)=1− 12 x
2+O(xp), xQ 0, p > 2.

The proofs of these two corollaries follow directly from Theorem 6.2.
We conclude this section with the following

Lemma 6.5. Let k(x) be the function constructed in Theorem 5.3.
Then

k(x)=1−
x2

2
+C
[p]

k=2
akx2k+bx2p+·· · , xQ 0, (6.12)

where dots denote higher order terms and [p] is the integer part of p;
p \ 3/2 is uniquely defined as the second root (the largest one) of the
equation

l(p)=pl(1), l(p)=F
1

0
ds G(s){[1−[a(s)]2p−[b(s)]2p}, (6.13)

Proof. The function k(x) satisfies Eq. (4.13) and inequalities (5.12).
Hence,

k(x)=1−
x2

2
+k2(x); |k2(x)| [ cx3, xQ 0. (6.14)
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Substituting (4.13) into Eq. (4.13) we obtain the leading asymptotic term of
k2(x):

k2(x)=a2x2n2+k3(x), k3(x)=o(x2n2), xQ 0, n2=min(2, p)

in the notation of Eq. (6.13). Similarly we obtain

k3(x)=a3x2n3+k4(x), n3=min(3, p),

and so on. This proves the expansion (6.12) provided the root of (6.13)
does exist. The inequality p \ 3/2 follows from Lemma 6.1 since

c(E)=l(1+E)−(1+E) l(1) > 0, 0 < E < 1/2

We note that Eq. (6.13) reads

m=
l(p)
p
=l(1),

and coincides (except for notation) with Eq. (3.18) discussed in Section 3.
Arguing as in Section 3, one can easily verify the following properties of m(p):

(a) m(p) > 0, p \ 1; (b) m(p)Q 0, pQ.; (c) m(p) has a unique
maximum at p=pg > 1 on [1,.).

The property (c) follows from the inequalities lŒ(p) > 0 and lœ(p) < 0,
p \ 1. Hence the root p \ 3/2 exists and is unique. L

Lemma 6.5 actually describes the most general asymptotic expansion
(6.11) of a solution of (4.13) satisfying (4.14). All coefficients ai, with
2 [ i [ [p] (if [p] ] p) or 2 [ i [ p−1 (if [p]=p), are defined uniquely
by the construction used in Lemma 6.5. We can also assume, without loss
of generality, that ap=0 if [p]=p. The coefficient b in Eq. (6.12) for the
concrete function k(x), defined in Theorem 5.3, cannot be found in such a
way. It remains therefore unknown whether or not b=0. We shall see
below that b ] 0 in the case of IBE (at least, for almost all values of the
restitution coefficient). This, in turn, leads to a power-like high energy tail
for the corresponding self-similar solution, as conjectured in refs. 3 and 4.

7. APPLICATION TO THE INELASTIC BOLTZMANN EQUATION

We consider the initial value problem for the n-dimensional distribu-
tion function f(|v|, t) (n=2,...)

“f
“t
=Qi(f, f), f|t=0=f0(|v|), v ¥ Rn, t > 0, (7.1)
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where Qi(f, f) is defined in such a way that the characteristic function

f 1 |k|
2

2
, t2=F

R
n
f(|v|, t) e−ik · v dv, k ¥ Rn, (7.2)

satisfies the equation

“f

“t
=F

1

0
ds G(s){f(z2sx) f[(1−bs) x]−f(x)},

1/2 < z < 1, b=z(2−z), x \ 0. (7.3)

It is assumed that

f0(0)=f(0, t)=1, G(s) \ 0, F
1

0
ds G(s)=1. (7.4)

We define a (generalized) solution of (7.1) as a function f(|v|, t) such that
its Fourier transform (7.2) satisfies (7.3) and the initial condition

f|t=0|=f0 1
|k|2

2
2=F

R
n
f0(|v|) e−ik · v dv. (7.5)

Of course we are mainly interested in non-negative solutions having
physical meaning. We assume, without loss of generality, that

F
R
n
f0(|v|) dv=

1
n
F
R
n
|v|2 f0(|v|) dv=1. (7.6)

Our main result for IBE (7.1) is the following

Theorem 7.1. (1) There exists a unique non-negative function F(|v|)
satisfying the conditions (7.6) (with F replacing f0) such that

fS(|v|, t)=enmtF(|v| emt), m=z(1−z) F
1

0
ds G(s) s, (7.7)

satisfies Eq. (7.1). The function F(|v|) is bounded and continuous on Rn

and is given by equality

F(|v|)=F
R
n
k 1 |k|

2

2
2 e ik · v dv

(2p)n
, (7.8)

where k(x) is defined (after proper change of notations) in Theorem 5.3.
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(2) There exists a non-empty class A of initial conditions f0(|v|)
satisfying conditions (7.6) such that the corresponding solutions f(|v|, t)
have the following property

e−nmtf(|v| e−mt, t)Q F(|v|), tQ. (7.9)

where the convergence is understood in the sense of probability measures.
(3) If f0(|v|) \ 0 satisfies (7.6) and

F
R
n
f0(|v|) |v|2+E dv [. F

R
n
f0(|v|) e ik · v dv \ 0,

for some E > 0 and all k ¥ Rn, then f0 ¥ A. In particular, the Maxwellian
distribution

f0(|v|)=M(|v|)=(2p)−n/2 e−|v|
2/2 (7.10)

belongs to the class A.

Proof. The proof is based on Theorems 5.1 and 6.2 after a suitable
change of notation (all considerations of Sections 4–6 relate directly to f̂;
see (4.1)) and now we need to reformulate them for the ‘‘true’’ characteris-
tic function f(x, t). In particular, Theorem 5.3 relates to a self-similar
solution fS(x, t)=k(xe−mt) of (7.3) and states that

e−x [ k(x) [ e−`2x(1+`2x), x=|k|2/2 \ 0, (7.11)

We note that e−x is the Fourier transform of a non-negative integrable
function. The iteration scheme (5.4) can be rewritten in terms of distribu-
tion functions Fn(|v|) such that for example,

F0=(2p)−n/2 e−|v|
2/2, Fn+1=R̂(Fn), n=0, 1,...

Then all Fn(|v|) remain non-negative and normalized by conditions (7.6).
Hence we obtain a sequence of characteristic functions kn(x) (note that
kn+1(x) \ kn(x) if k0(x)=e−x) which converges point-wise on [0,.] to
k(x). The function k(x) is obviously continuous at x=0 (this follows, e.g.,
from estimates (7.11)) and, therefore k(x) is also a characteristic function.
Hence, F(|v|) \ 0 in (7.7). Uniqueness of k(x) (and, therefore, of F(|v|))
is stated in Corollary 6.4 of Theorem 6.2. The inverse Fourier transform
and the local properties of F(|v|) are justified by the upper estimate in
Eq. (7.11). Thus, part (1) of the statement is proved.
In order to prove parts (2) and (3) of the theorem, we recall that point-

wise convergence of characteristic functions implies the (weak) convergence
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of distribution functions (in the usual ‘‘kinetic’’ terminology) in the sense of
probability measures. (15) The Maxwellian (7.10) belongs to class A (so that
A is non-empty!) because of Corollary 6.3 of Theorem 6.2 (note again that
the notations we use now differ from those in Section 6). It follows from
known results in the theory of characteristic functions (21) that the condi-
tions given in the third part of the statement are sufficient for Theorem 6.2
to apply. L

Theorem 7.1 does not contain any information about the asymptotic
behavior of F(|v|) for large |v|. This behavior ca be obtained on the basis of
Lemma 6.5. For the sake of simplicity, we consider here just one question:
existence of the moments

ml=(F, |v|2l). (7.12)

of integer order l=0, 1, 2,... . First we note that m0=m1/d=1 by con-
struction. The existence of higher moments is stated in the following

Theorem 7.2. The function F(|v|) defined in Theorem 7.1 has
moments of all orders if and only if the maximal root p \ 3 of the equation

F
1

0
ds G(s)[1−(z2s)p−(1−bs)p]−2pz(1−z) F

1

0
ds sG(s)=0 (7.13)

is an integer (p=2, 3,...). Otherwise

m[p] <., m[p]+1=. (7.14)

Proof. We use Lemma 6.5, where x=|k|, a(s) and b(s) are given
in Eq. (4.11). Equation (7.13) is the corresponding particular case of
Eq. (6.13). Hence,

(F, e−ik · v)=1−
x2

2
+C
[p]

l=2
alx2l+bx2p+·· · , k Q 0, (7.15)

Then we use the well connection between moments of F and derivatives of
its characteristic function:

[D lk(F, e
−ik · v)]k=0=(−1) l (F, |v|2l) l=1, 2,..., (7.16)

where Dk is the Laplacian in Rn. If p \ 2 is an integer, then the expansion
(7.15) does not contain fractional powers of |k|2 and therefore all moments
of F are finite. If p \ 3/2 is not an integer, then we need to prove that
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b ] 0 in Eq. (7.15). We prove this by contradiction. If p ] [p] and b=0,
then we proceed to the construction of an asymptotic (as |k|2Q 0) expan-
sion described in Lemma 6.5; we can continue the process indefinitely and
no fractional powers of |k|2 will appear in the expansion if b=0. Hence,
the function F(|v|) has finite moments of all orders. However, it was
already proved in ref. 7 (for the case n=3, p ] [p]; the proof can be gen-
eralized to an arbitrary n=2, 4, 5,... without changes) that such function
F(|v|) cannot be positive. This leads to a contradiction with the positivity
of F(|v|) (Theorem 7.1). L

It should be stressed that the expansion (7.15) apparently first
appeared in papers (3, 4) with the formal conclusion, that

F(v) 5 |v|−(n+2p) v Q., (7.17)

This conclusion seems quite probable, but it is difficult to prove it
rigorously and we did not try to do it.
All the results of this section are proved for the multidimensional case

n \ 2. For completeness, we present also similar results in the simplest case,
n=1. In such a case, the IBE is also defined by Eq. (7.1) with n=1;
however, Eqs. (7.2) and (7.3) should be replaced by

f(|k|, t)=F
.

−.
f(|v|, t) e−ikv dv, k ¥ R, (7.18)

and by Eq. (2.23) for f(|k|, t), respectively.
We note that Eq. (2.23) coincides with Eq. (4.8), where G(s)=d(s−z),

x=|k|, a(s)=s, b(s)=1−s. The self-similar solution (Theorem 5.3) is
given in Eqs. (2.24) and (2.25) in an explicit form. Theorem 6.2 (self-similar
asymptotics for Eq. (4.8)) remains valid in this case. Hence, we proved the
following

Lemma 7.3. Theorem 7.1 remains valid also in the case n=1 for
IBE (7.1) defined through Eqs. (7.18) and (2.23) as indicated above. The
function F(|v|) and the parameter m for n=1 are given in an explicit form
in Eqs. (2.24) and (2.25).

8. POWER-LIKE TAILS, THE ERNST-BRITO CONJECTURE, AND

OPEN QUESTIONS

The main result of Section 7 is the proof of self-similar asymptotics
(Ernst–Brito conjecture). (3, 4) We did not prove it for arbitrary initial data,

360 Bobylev and Cercignani



but at least Theorem 7.1 proves it for the most typical initial data (like a
Maxwellian) and leaves almost no doubt that the conjecture is true for a
wide class of initial conditions. On the other hand, the asymptotic equality

f(|v|, t) 5 enmtF(|v| emt), tQ., |v|Q 0,

has, strictly speaking no relation to high energy tails of f(|v|, t); rather it
actually describes a large time asymptotics for small energies, which may be
large compared to T(t)Q 0. Therefore the power-like behavior of F(|v|) for
large |v| does not seem to be very important. Moreover, this property is very
unstable in some sense near the elastic limit, as one can see from the following

Lemma 8.1. There exists a sequence

{em, m=1, 2,...}, 0 [ em < 1, em Q 1

of values of the restitution coefficient e such that all the positive roots

pm=p(zm), m=1, 2,..., zm=
1
2 (1+em)

of Eq. (7.13) are integers.

Proof. We denote the left hand side of Eq. (7.13) by A(p, z). Then,
for any fixed p > 1, A(p, z) is a continuous function of z ¥ [1/2, 1] and

A(p, 1)=F
1

0
ds G(s)[1−sp−(1−s)p] > 0,

A(p, 1/2)=1−
p
2
F
1

0
ds sG(s) < 1−

p
2
,

Hence, A(p, 1/2) < 0 for sufficiently large p. Therefore for such p there
exists a root z=zp ¥ (1/2, 1) of the equation A(p, z)=0. Taking a
sequence pm=N+m, where N is a sufficiently large integer, we obtain
a sequence {em} given by the equalities

em=2zN+m−1, m=1, 2,...

It remains to prove that em Q 1 or, equivalently, zN+m Q 1, if mQ.. We
omit some simple calculations showing that the asymptotic behavior of the
root zp of the equation A(p, zp)=0 is given by the equality

zp=1−
1
p
52 F 1

0
ds sG(s)6 , pQ.,

and therefore zp Q 1 if pQ.. L
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Lemma 8.1 combined with Theorem 7.2 shows that, in the ‘‘near
elastic case,’’ 0 < 1−e < < 1, there exists a countable set of values of e
such that the function F(|v|) has, for any such value of e, finite moments of
all orders. This is a main difference of the many-dimensional case (n \ 2)
from the 1d case (see Eq. (2.22)) when F(|v|) (2.25) does not depend on the
restitution coefficient (a new interpretation of the well-known universality
of the BKW solutions satisfying EBE with an arbitrary kernel).
Thus the power-like tails of F(|v|) are not necessary for the Ernst–

Brito conjecture to hold: the self-similar asymptotics (Theorem 7.2) holds
independently of whether or not F(|v|) has such tails. Paradoxically,
the logical basis for the Ernst–Brito conjecture (higher moments of the
‘‘rescaled’’ solution tend to infinity and possible existence of self-similar
solutions with ‘‘the same’’ number of finite moments) is not, generally
speaking, correct (the second argument fails if F(|v|) has finite moments of
all orders). However the conjecture itself

f(|v|, t) 5 enmtF(|v| emt), tQ., |v|Q 0, (8.1)

(8.1)) appears to be true in the most general case of arbitrary kernels G(s)
satisfying the usual restrictions.

Remark 8.2. The following simple example

f(|v|, t)=(1−e−nt) f1(|v|)+e−(n+3) tf2(|v|e−t), v ¥ R3, n=1, 2, 3,...,

where f1, 2(|v|) are normalized distribution functions with finite moments
of any order, shows that the divergence (for tQ.) of higher moments
(of order greater than n) is not in contradiction with the fact that
f(|v|, t)Q f1(|v|) as tQ. (point-wise if f2(|v|) is bounded and in the sense
of probability measures in the most general case).

We mention two open questions:

(a) How can we describe the whole class of initial conditions satis-
fying the Ernst–Brito conjecture? The proof of Theorem 7.1 can be easily
generalized to anisotropic solutions of IBE. On the other hand, the second
assumption in part (3) of the theorem (positivity ofF[f0]) is probably not
necessary, but our proof is based on it.

(b) How can we connect the self-similar solutions of the Fourier
transformed EBE (Sections 5–6) with its ‘‘physical’’ (positive) solutions?
This question is partly addressed in Section 9; we also discuss some more
general aspects of it below.
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In order to explain the second question, we mention that Theorem 5.3
means, in particular, that, for any

0 < m < mmax=F
1

0
ds G(s) s(1−s)

there exists a unique self-similar solution fm(x, t)=km(xe−mt) such that

0 [ km(x) [ 1; fm(x)=1−
1
2 x
p+·· · , xQ 0,

where 1 < p [ 2 is defined as the smallest root of the equation

m=
1
p
F
1

0
ds G(s)[1−sp−(1−s)p].

This solution for p=2 is known explicitly from Eq. (2.24) with m=mmax.
Thus Theorem 5.3 leads to the following

Proposition 8.3. The (elastic) Boltzmann equation for Maxwell
molecules (n=3) admits a class of self-similar solutions

fm(|v|, t)=e3mt/2F(|v| emt/2), 0 < m [ mmax,

F(|v|)=F
R
3
km 1
|k|2

2
2 e ik · v dv

(2p)3
,

(8.2)

having zero second moment. This leads to a class of solutions with finite
(and positive) second moment given by the convolution

fm, h(|v|, t)=fm(|v|, t) fMh(|v|), Mh(|v|)=(2ph)−3/2 e−|v|
2/(2h). (8.3)

The proof for true Maxwell molecules can be easily given by successive
approximation by cutoff models (as in our previous paper (2)). The possi-
bility of performing the inverse Fourier transform is justified by the
inequality (5.12).
We recall that the analogous statement (with m ¥ (−., 0)) was pre-

viously proved (2) for solutions with infinite energy; moreover all such solu-
tions appeared to be non-negative. The case of finite energy is obviously
more complex. The solutions fm(|v|, t) (8.2) cannot be positive since they
have a vanishing second order moment. The ‘‘convoluted’’ solutions (8.3)
might be in principle be positive for a sufficiently large h > 0, but we were
not able neither to prove nor disprove it. The simplest example (2.24) does
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not lead to non-negative solutions of the Boltzmann equation, as we
already remarked in ref. 2. On the other hand, the solutions (8.2) do play a
certain asymptotic role as follows from Theorem 6.2.
Finally we mention that the solutions (8.2), (8.3) represent new eternal

solutions (in addition to ref. 2) of the Boltzmann equation (i.e., solutions
existing for all t ¥ (−.,.)). Unfortunately we cannot say much on their
positivity.

9. MAXWELLIAN TAILS FOR EBE

It was noted in Section 8 that the class of self-similar solutions of IBE
can be used to study the large time asymptotic behavior for small energies.
On the contrary, we shall see below that Theorem 6.2 does bring some new
information about high energy tails in the classical (elastic) case.
Let f(v, t) (v ¥ Rn, t ¥ R+) be a solution of the Elastic Boltzmann

Equation (EBE)

“f
“t
=Q(f.f), f|t=0=f0(v) \ 0. (9.1)

We assume that

(f0, 1)=1,
1
n
(f0, |v|2)=1,

1
n
(f0, v)=0 (9.2)

in the notation (2.5). In addition we assume that f0(v) is a rapidly decreas-
ing function:

(f0, ea0 |v|
2
) <. (9.3)

for some a0 > 0. Then we can use the following

Lemma 9.1. There exists a solution f(v, t) of the problem (9.1)
such that the equalities (9.2) and the inequality (9.3) (perhaps with another
constant 0 [ a1 < a0) are valid for all t > 0. The function

F(k, t)=F
R
n

dv
(2p)n/2

e−|v−k|2/2F(v, t), f(v, t)=F(v, t)
e−|v|

2/2

(2p)n/2
(9.4)

satisfies the equation

“F

“t
=F

Sn−1
dwg 1k ·w

|k|
2 5F 1k+|k| w)

2
2 F 1k−|k| w)

2
2−F(k)6 , (9.5)
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and conditions

F|k=0=1, NF|k=0=0, DF|k=0=0 (9.6)

Proof. The fact that there exists a global solution of the problem
(9.1) in the class of rapidly decreasing functions (9.3) is well-known (see
ref. 14; the same property for hard spheres is proved in ref. 20). The
Fourier transform f(k)=(f, e−ik · v) for such functions can be extended to
all complex values k ¥ Cn, in particular to imaginary values k=iq, q ¥ Rn.
The usual equation for f(k, t) remains the same for all complex k and
remains invariant under multiplication by exp(b |k|2) with any (complex)
b=const. The transformation (9.4) reads

F(k, t)=e−|k|
2/2(f, ek · v)

and therefore leads to the familiar equation (9.5). Equations (9.6) are
simply obvious consequences of the conservation laws and the normaliza-
tion conditions (9.2). L

The transformation (9.4) leads to the following idea to study the
asymptotic properties of f(v, t), as |v|Q.. Let us consider any function
E(t) such that

E(t) > 0; E(t)Q 0, tQ..

Then

F 1 k
E(t)
, t2=F

R
n
dv C(k− v; E(t)) F 1 v

E(t)
, t2 , (9.7)

where

C(k; E)=(2pE2)−n/2 exp 1−|k|
2

2E2
2 (9.8)

Noting that C(k; E)Q d(k), as EQ 0, we formally obtain an asymptotic
equality

F 1 k
E(t)
, t2 5 F 1 v

E(t)
, t2 , tQ. (9.9)

which can be proved rigorously in many important cases. We remark that,
for rapidly decreasing solutions f(|v|, t) of the Boltzmann equation (9.1),
the function F(k, t) must be an entire analytic function of the (vector)
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complex variable k ¥ Cn. Hence, the only class of the self-similar solutions,
which have been discussed above (see the end of Section 8) and can be
considered in the present context, is the set of BKW solutions:

Fg(k, t)=kBKW 1a
|k|2

2
e−mt2 (9.10)

in the notation of (2.24) with an arbitrary parameter a > 0. It was already
proved (Theorem 6.2) that any isotropic solution F(|k|, t) such that

F(|k|, 0)=f0 1a
|k|2

2
2 , 0 [ f0(x) [ 1,

f0(x)=1−
1
2
x2+O(x2+d), xQ 0, d > 0.

(9.11)

has the self-similar asymptotics

lim
tQ.
F(|k| emt, t)Q kBKW 1a

|k|2

2
2 , (9.12)

and

0 [ F(|k| emt, t) [ 1, (9.13)

Let us assume that there exists a d > 0 such that

F(|k|, 0) [ kBKW 1d
|k|2

2
2 , (9.14)

then

F(|k| emt, t) [ kBKW 1d
|k|2

2
2 ,

for all t \ 0. The transformation (9.4) implies that

(F, 1)=(F, 1);

moreover both functions F and F are non-negative. Let us consider any
function F(|k|, t) satisfying (9.5) and (9.6) and the corresponding function
F(|v|, t). Denoting

F̃(|v|, t)=F(|v| emt, t), F̃(|k|, t)=F(|k| emt, t),
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we apply (9.7) with E=e−mt and obtain

F̃(|k|, t)=F
R
n
dv C(k− v; e−mt) F̃(|v|, t),

By usual arguments (15) (Chapter 8), we can conclude that in such a case
the limiting equality (9.12) implies the weak convergence (in the sense of
measures):

F̃(|v|, t)Q kBKW 1a
|v|2

2
2 .

The condition (9.14) guarantees that the integral (F̃, 1) is uniformly
bounded for all t > 0 and this justifies passing to the limit. The result can
be formulated as follows

Theorem 9.2. (1) There exists a non-empty class of initial condi-
tions f0(|v|) satisfying (9.2) and (9.3) such that the corresponding solutions
f(|v|, t) of problem (9.1) have the following asymptotic behavior for large
|v| and large t:

f(|v|, t)=F(|v|, t)
e−|v|

2/2

(2p)n/2
, (9.15)

F(|v| emt, t)QtQ. (1+a|v|2/2) e−a |v|
2/2, m=F

1

0
ds G(s) s(1−s), (9.16)

where the convergence is understood in the sense of measures and the value
of the parameter a depends on the initial conditions in the following way:

a==1− m4
n(n+2)

, m4=(f0, |v|4).

(2) Any function f0(|v|) satisfying conditions (9.2), (9.3) and the
assumption (9.14) with some d > 0 for the corresponding F0(|k|) belongs to
this class. In particular in the three-dimensional case all functions having
finite support such that

f0(|v|) \ 0, f0(|v|)=0 if |v| > r0, r0 <`5, (9.17)

and satisfying Eqs. (9.2) and (9.3) belong to this class.
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Proof. It is easy to verify that the above explicit formula for a leads
to the correct asymptotics (9.11) (as |k|Q 0) of the function F0(|k|)=
F(|k|, 0). Accordingly, we omit the direct calculations. The proof of the
asymptotic formula (9.16) under the assumption (9.14) was already given
above. The We need only to verify that the assumption (9.14) is fulfilled for
the functions (9.17) with compact support. The transformation (9.4) leads
to

e |k|
2/2F0(k)=

4p
|k|

F
.

0
dr rf0(r) sinh(|k|r)

[ 1+ C
.

n=01

xn

n!
3r2(n−1)0

(2n+1)!!
, x=|k|2/2. (9.18)

The condition in (9.14) is satisfied if

e |k|
2/2F0(k) [ (1+dx) e−(1−d) x=1+C

.

n=1

xn

n!
(1−d)n−1 [1+(n−1) d] (9.19)

for some d > 0 and any x > 0. It is sufficient to show that there exists a
d > 0 such that

3r2(n−1)0

(2n+1)!!
[ (1−d)n−1 [1+(n−1) d], n=1, 2,..., r20 < 5 (9.20)

This result will be a consequence in the lemma below, by letting there
h=d=(1−r20/5)

1/2. Therefore the estimate in (9.19) is proved and the
function (9.17) does satisfy the conditions in (9.14). L

In order to complete the proof of Theorem 9.2 let us prove the
following

Lemma 9.3. The following inequalities

3[5(1−h2)]n−1

(2n+1)!!
[ (1−h)n−1 [1+(n−1) h], n=1, 2,... (9.21)

hold for any 0 [ h [ 1.

Proof. We need to prove that

rn=
3[5(1+h)]n−1

(2n+1)!! [1+(n−1) h]
[ 1, 0 [ h [ 1, n=1, 2,...
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Noting that

r1=1, rn+1=an(h) rn, an(h)=
5(1+h)[1+(n−1) h]
(2n+3)(1+nh)

,

we verify that a −n(h) \ 0 for any h \ 0, n \ 1. Hence,

an(h) [ an(1)=
10n

(2n+3)(1+n)
[ 1, n=1, 2,...,

and the lemma is proved. L

Remark 9.4. Part (1) of Theorem 9.2 is in a sense obvious since the
known exact solution

fBKW(|v|, t)=[2p(1−a(t))]n/2 51+
a(t)
1−a(t)
1 |v|2
1−a(t)

−
n
2
26 e− |v|2

2(1−a(t),

a(t)=ae−2mt, |v ¥ Rn

which is positive for all t > 0 if a [ 2/(n+2), certainly belongs to the
described class. Part (2) shows that this class includes also other solutions
having the same asymptotic behavior, in particular the functions satisfying
conditions (9.17).

Another interesting example is given by the initial conditions

f|t=0=fp(|v|)=A|v|2p e−a
|v|2

2 , p=1, 2,..., v ¥ R3

where A and a are chosen in such a way that Eqs. (9.2) (with n=3) hold.
In rder to prove that the inequality (9.14) is also valid in this case, we note
that

F[fp(|v|)]=F
R
3
fp(v) e−ik · v dv=e−

|k|2

2a
L1/2p (|k|

2/2a)
L1/2p (0)

, p=1, 2,...,

where L1/2p (z) denotes a Laguerre polynomial. It is well-known that the
zeroes of L1/2p (z) are real and positive. Hence

L1/2p (z)=L
1/2
p (0) D

p

k=1
(1−b (p)k z), b (p)k > 0.

Therefore the function Fp(|k|)=F(|k|, 0) (9.4) reads

F(|k|, 0)=f0(|k|2/2a), f0(x)=D
p

k=1
(1+b (p)k x) e

−b(p)k x,
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and the condition (9.14) where d equals any b (p)k should be fulfilled. The
same argument can be used for any rapidly decreasing isotropic initial
function (9.3) such that its Fourier transform has just real zeroes (zn=|k|

2
n)

(the condition (9.3) guarantees that F[f0] is an entire analytic function of
exponential type of the complex variable z=|k|2).

Remark 9.5. The condition (9.14) yields actually much more than
merely a weak convergence of measures. It leads to convergence of all
moments of F̃(|v|, t), etc. If this condition is replaced by a weaker one

0 [ F(|k|, 0) [ 1,

then it is still possible to prove the convergence (9.16) in the weak sense on
continuous test functions with compact support.

It should be stressed, however, that not all rapidly decreasing initial
conditions normalized as in Eq. (9.2) lead to the asymptotic behavior
described by Eqs. (9.15). This is not true even for initial conditions with
compact support. It was proved long ago (see ref. 16 for details) that there
are two different kinds of asymptotic behavior for such initial conditions.
The difference is expressed in terms of the so-called tail temperature y(t)
defined for any given solution f(v, t) of (9.1) by the following equality

y−1(t)=sup{a > 0 : (f, ea |v|
2/2) <.}

The function y(t) is monotone increasing; moreover yM=1 for the
Maxwellian normalized by (9.2). If y(0)=0 (this holds, e.g., for initial data
with compact support) then we distinguish between.

(a) the normal kind of asymptotic behavior if y(t)Q 1 as tQ., and
(b) an abnormal kind of behavior if y(t)Q y. > 1 as tQ.. It is

known that y. can be as large as we want for initial conditions with
y(0)=0 and with the usual normalization (9.2).

Theorem 9.2 obviously describes a normal kind of asymptotics. It
seems quite probable that all solutions of that kind with y(0)=0 belong to
the class described by Theorem 9.2, but we were not able to prove this. The
problem of the asymptotic behavior of the solutions belonging to the
second (abnormal) kind remains open.

10. CONCLUDING REMARKS

We have considered some questions related to the self-similar asymp-
totics in the theory of the Boltzmann equation for both elastic (EBE) and
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inelastic particles (IBE). In the second case we think of granular materials,
when the model of hard spheres with inelastic collisions is replaced by a
Maxwell model, characterized by a collision frequency independent of the
relative speed of the colliding particles (with a corresponding change of the
time variable).
We stress an important difference between Maxwell models in the

two cases (elastic and inelastic). In the first case the Boltzmann equation
is clearly related to the classical dynamics of the gas molecules, which
are, by definition, mass points interacting with a potential U(r) propor-
tional the inverse fourth power of their distance. It is true that we often
use the cut-off cross section (pseudo-Maxwell molecules), but this is
simply a mathematically well-defined approximation of the EBE for true
Maxwell molecules: almost all results can be (quite rigorously) general-
ized to the true Maxwell cross-section by the corresponding transition to
the limit.
On the other hand, in the inelastic case we should consider a kinetic

equation which corresponds to the dynamics of macroscopic particles of
finite size (say, inelastic hard spheres). This obviously means that the basic
equation (in the low density limit) is the IBE for hard spheres. Hence, the
inelastic Maxwell model does not have an underlying particle dynamics:
it is just a mathematical model though with a clear probabilistic meaning
(therefore it is very easy to make numerical experiments with this model (5)).
For this reason, we need to understand clearly the relation between the
Maxwell model and the ‘‘true’’ IBE for hard spheres and we tried to clarify
this question (in which sense the model can be considered as an ‘‘approxi-
mation’’ of the IBE for hard spheres) in Section 2.
One should be very careful when trying to draw any conclusion for the

hard sphere case on the basis of Maxwell models. There are many examples
(see, e.g., ref. 24) showing that some properties of EBE for Maxwell mole-
cules cannot be generalized to the case of hard spheres.
At least, the Boltzmann equation for both elastic and inelastic

Maxwell particles is a well-defined mathematical model. Fortunately, we
already have a mature technique (based on the Fourier transform) to deal
with EBE, which can be easily generalized to the case of IBE. Moreover, it
is natural to consider both cases from a unified viewpoint, as we do in this
paper. Then mathematical methods, developed for EBE, allow us (and this
does not occur very often in kinetic theory) to answer some relevant ques-
tions concerning the self-similar asymptotics in a quite rigorous form.
These answers are given above in Theorems 7.1 and 9.2.
The main results can be easily explained to a reader who is not inter-

ested in mathematical details and proofs. For simplicity, we shall do this
for the case n=3.
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1. What new results do we obtain for IBE?

We consider the initial value problem (7.1), where f0(|v|) is normalized
as

(f, 1)=1, (f, |v|2)=3. (10.1)

It is well-known that

f(|v|, t)Q d(|v|), T(t)=1
3 (f, |v|

2)=e−2mt, m=1
8 (1−e

2), (10.2)

where 0 [ e < 1 is the restitution coefficient (note that G(s)=1 in Eq. (7.7)
for n=3).
We have constructed (Theorem 7.1) the positive self-similar solution of

Eq. (7.1)

fS(|v|, t)=e3mtF(|v| emt), (10.3)

and proved that for any initial condition f0(v) satisfying Eqs. (10.1) and
two additional assumptions

(f, |v|2+E) <., (f, e−ik · v) \ 0, k ¥ R3, (10.4)

the corresponding solution f(|v|, t) of the problem (7.1) has a self-similar
asymptotics:

f(|v|, t) 5 FS(|v|, t), if tQ., |v|Q 0, (10.5)

such that |v| emt remains finite. The exact meaning of this asymptotic
equality is the following

e−3mtf(|v| e−mt, t)Ł
tQ.

F(|v|), (10.6)

where the convergence is understood in the sense of probability measures.
Thus, we have proved the Ernst–Brito conjecture for a wide class of

initial data, including the Maxwellian

M(|v|)=(2p)−3/2 e−|v|
2/2, (10.7)

all satisfying the conditions (10.4).It is also shown that the function F(|v|)
has a restricted number of moments not for all, but for almost all values
of the restitution coefficient 0 [ e < 1; there exists a sequence {en}, en Q 1
such that the function F(|v|) has finite moments of all orders if e=en,
n=1, 2,... (this degeneracy is discussed in detail at the beginning of
Section 8).
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2. What new results do we obtain for EBE?

We consider the initial value problem (9.1) for isotropic initial data
f0(|v|) \ 0 satisfying Eqs. (10.1). It is well known that f(|v|, t)QtQ.

M(|v|),M(|v|) is given by Eq. (10.7)
In addition, we assume that

(f0, ek · v) [ (M, ek · v), k ¥ R3 (10.8)

and study the asymptotic properties of the function g(|v|, t)=f(|v|, t)/M(|v|)
for large values of |v) and t. This can be understood as the problem of the
formation of the Maxwellian tails for initial data satisfying (10.8). It is
proved (Theorem 9.2) that g(|v|, t) has a self-similar asymptotics

g(|v| emt, t)Ł
tQ.

(1+a|v|2) e−a |v|
2
, (10.9)

where a > 0 depends only on f0(|v|), m depends only on the cross-section
(see the explicit formulas in Theorem 9.2), and the convergence is under-
stood in a certain weak sense. We note that the above asymptotic formula
obviously holds for the exact BKW solution. Krook and Wu, (22) 26 years
ago, conjectured that this exact solution describes in some sense a large
time asymptotics of solutions f(|v|, t). The conjecture was never confirmed
in its initial form (see ref. 23 for a review). Our results for EBE can be
considered as a proof of a modified form (10.9) of the Krook–Wu conjec-
ture. The restriction (10.8) seems to be not only sufficient but also neces-
sary for self-similar asymptotics in the form (10.8). Examples of initial
conditions leading to Eq. (10.9) are

(1) functions with compact support

f0(|v|) \ 0, f0(|v|)=0 if |v| >`5;

(2) functions of the form

f0(|v|)=const. |v|2p e−a |v|
2
, p=1, 2,...

The two types of self-similar asymptotics given by Eq. (10.6) for IBE
and by Eq. (10.9) for EBE seem to be very different from the physical
viewpoint. Both of them, however, are direct consequences of the self-
similar asymptotics for solutions of Eq. (4.9) (Theorem 6.2). Therefore it
is quite natural, from a mathematical viewpoint, to present them together
in this paper, as particular cases of a general non-linear kinetic equation.
These results are, to our knowledge, the first rigorous results on self-similar
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asymptotics for finite energy solutions of nonlinear Boltzmann equations.
(similar questions for solutions with infinite energy were discussed in our
previous paper (2)).
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